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Hetero-fullerenes are fullerene molecules in which one or more carbon atoms are replaced by hetero-atoms such as boron 
or nitrogen, whose formation is a kind of “on-ball” doping of the fullerene cage. In this paper by using the Pólya's theorem 
we compute the number of possible positional isomers and chiral isomers of the hetero-fullerenes.  
 
(Received June 09, 2010; accepted July 14, 2010) 
 
Keywords: Fullerene, Hetero-fullerene, Leapfrog principle, Cycle index 
 

 
1. Introduction  
 
A graph is a collection of points and lines connecting 

them. The points and lines of a graph are also called 
vertices and edges respectively. If e is an edge of G, 
connecting the vertices u and v, then we write e = uv and 
say "u and v are adjacent". A connected graph is a graph 
such that there exists a path between all pairs of vertices. 

A molecular graph is a simple graph such that its 
vertices correspond to the atoms and the edges to the 
bonds. Note that hydrogen atoms are often omitted. 
According to the IUPAC terminology, a topological index 
is a numerical value associated with chemical constitution 
which can be then used for correlation of chemical 
structure with various physical and chemical properties, 
chemical reactivity and biological activity. 

Fullerenes are carbon-cage molecules in which a large 
number of carbon (C) atoms are bonded in a nearly 
spherically symmetric configuration which was discovered 
for the first time in 1985.1 By the Euler’s formula one can 
see that every fullerene graph with n vertices has exactly 
12 pentagonal and (n/2 − 10) hexagonal faces, where n ≠ 
22 is a natural number equal or greater than 20.2,3 Hetero-
fullerenes are fullerene molecules in which one or more 
carbon atoms are replaced by hetero-atoms such as boron 
or nitrogen, whose formation is a kind of “on-ball” doping 
of the fullerene cage. 

Stellation St of a graph consists of adding a new 
vertex in the center of its faces followed by connecting it 
with each boundary vertex. It is also called a capping 
operation or triangulation.4,5 

Dualization Du of a map can be achieved by locating 
a point in each of its faces. Two such points are joined if 
their corresponding faces share a common edge. The new 
edge is called the edge dual Du(e) and the transformed 
map, the dual Du(M). The vertices of Du(M) represent the 
faces of M and vice-versa. Leapfrog Le is a composite 
operation. It can be written as:  

 
Le = Du(St(M)) 

 

In [6] and [7] a method is described how to construct 
a fullerene C3n from a fullerene Cn having the same or 
even a bigger symmetry group as Cn. This method is called 
the Leapfrog principle. The Leapfrog fullerene has 3n 
vertices 12 pentagonal and (3n/2)-10 hexagonal faces. 
Knowing the 3-dimensional cycle index of S(Cn) acting on 
the sets of vertices, edges and faces it is very easy to 
compute the cycle index for the induced action of S(Cn) on 
the set of vertices of C3n. We just have to identify the 
vertices of Cn with the n new hexagonal faces of C3n.7 
From Fig. 1, one can see that Le(C34) = C102. 

 
C34 Fullerene 

 
Le(C34) = C102 

Fig. 1. The Fullerene C34 and Le(C102). 
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Detecting symmetry of molecules is a well-studied 
problem with applications in a large number of areas. 
Randic8,9 and then Balasubramanian10-16 considered the 
Euclidean matrix of a chemical graph to find its symmetry. 
Here the Euclidean matrix of a molecular graph G is a 
matrix D(G) = [dij], where for i ≠ j, dij is the Euclidean 
distance between the nuclei i and j. In this matrix dii can be 
taken as zero if all the nuclei are equivalent. Otherwise, 
one may introduce different weights for different nuclei.  

Suppose σ is a permutation on n atoms of the 
molecule under consideration. Then the permutation 
matrix Pσ is defines as Pσ = [xij], where xij = 1 if i = σ(j) 
and 0 otherwise. It is easy to see that PσPτ = Pστ, for any 
two permutations σ and τ on n objects, and so the set of all 
n × n permutation matrices is a group isomorphic to the 
symmetric group Sn on n symbols. It is a well-known fact 
that a permutation σ of the vertices of a graph G belongs 
to its automorphism group if it satisfies Pσ

tAPσ = A, where 
A is the adjacency matrix of G. So, for computing the 
symmetry of a molecule, it is sufficient to solve the matrix 
equation PtEP = E, where E is the Euclidean matrix of the 
molecule under consideration and P varies on the set of all 
permutation matrices with the same dimension as E.  

Balasubramanian has done a lot of work on methods 
for isomer counting of hetero-fullerenes and of poly-
substituted fullerenes, especially, using the generalized 
character cycle index. Mathematically the isomer counting 
of poly-substituted fullerene is essentially the same as that 
of hetero-fullerene. Shao and Jiang17 discussed 
hydrogenated C60. Furthermore, Zhang18 also studied the 
fullerene cages. Ashrafi et al.7 computed chiral isomers of 
a class of IPR hetero-fullerenes, namely 3 20nC × . In this 
paper we compute the number of hetero-fullerenes 

3 34nC × . 
 
 
2. Main results  
 
Groups are often used to describe symmetries of 

objects. This is formalized by the notion of a group action. 
Let G be a group and X a nonempty set. An action of G on 
X is denoted by GX and X is called a G-set. It induces a 
group homomorphism ϕ from G into the symmetric group 
SX on X, where ϕ(g)x = gx for all x ∈ X. The orbit of x 
will be denoted by Gx and defines as the set of all ϕ(g)x, g 
∈ G. The set of all G-orbits will be denoted by G\\X : = { 
Gx | x ∈ X}. Suppose g is a permutation of n symbols with 
exactly λ1 orbits of size 1, λ2 orbits of size 2, …, and λn 
orbits of size n. Then the cycle type of g is defined as 

1 2 n1 2 ...n .λ λ λ  
We now introduce the notion of cycle index. Let G be 

a permutation group. The cycle index of G acting on X is 
the polynomial Z(G, X) over Q in terms of indeterminates 
x1, x2, …, xt, t = |X|, defined by Z(G, X) = 

i
t c (p)

ip G i 1

1 x ,
| G | ∈ =∑ ∏  in which (c1(p), ···, ct(p)) is the cycle 

type of the permutation p ∈ G. The generalized character 
cycle index is defined as 

∑ ∏∈ =
χ χ= Gp

t
1i

)p(c
it21G

ix)p(
|G|

1)x,...,x,x(P , where χ(g) is 

the linear character of the irreducible representation of G. 
In this paper we use two special cases: One is the anti-
symmetric representation, that is  

1 ,
( )

1 ,

if g is a proper rotation
g

if g is an improper rotation
χ

⎧⎪= ⎨
⎪−⎩

 

and the other when χ is 1 for all g. Since, all elements of a 
conjugacy class of a permutation group have the same 
cycle type, so the cycle index and the generalized 
character cycle index can be rephrased in the following 
way: 
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i C

t c (g )
1 t iC Conj(G) i 1
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Enumeration of chemical compounds has been 

accomplished by various methods. The Polya-Redfield 
theorem has been a standard method for combinatorial 
enumerations of graphs, polyhedra, chemical compounds, 
and so forth. Combinatorial enumerations have found a 
wide-ranging application in chemistry, since chemical 
structural formulas can be regarded as graphs or three-
dimensional objects.  

Denote by Cm,n the set of all functions f: {1, 2, …, 
m}→ {x1, x2, ..., xn}. The action of p ∈  Sm  induced on 
Cm,n is defined by p̂ (f) = fop-1, f ∈  Cm,n. Treating the 
colors x1, x2, …, xn that comprise the range of f ∈ Cm,n as, 
independent variables the weight of f is W(f) = m

i 1
f (i)

=∏ . 

Evidently, W(f) is a monomial of (total) degree m. 
Suppose G is a permutation group of degree 
m, Ĝ ={ p̂ :p∈G}, p̂  is as defined above. Let p1, p2, …, 

pt be representatives of the distinct orbits of Ĝ . The 
weight of pi is the common value of W(f), f ∈  pi. The sum 
of the weights of the orbits is the pattern inventory 
WG(x1,x2,…,xn)= t

ii 1
W(p )

=∑ . 
Theorem.1 (Pólya's Theorem19) If G is a subgroup of 

Sm, the symmetry group on m symbols, then the pattern 
inventory for the orbits of Cm,n modula Ĝ  is  

 
WG(x1,x2,…,xn)= ∑ ∈Gp

pC
m

pCpC mMMM
G

)()(
2

)(
1 ...

||
1

21 , 

 
where Mk = x1

k+x2
k+…+xn

k is the kth power sum of the x’s. 
Theorem.2 (Generalization of Pólya's Theorem) 

Substituting Mi for xi and in the generalized character 
cycle index, i = 1, 2, , t, we get the chiral generating 
function 

1( , , )G kCGF P M Mχ= K . 
To enumerate all possibilities of the hetero-fullerene 

structures, we have to consider the rotation group of the 
fullerene, and its whole automorphism group to enumerate 
the number of chiral isomers. Fripertinger20 computed the 
symmetry of some fullerenes and then applied 
SYMMETRICA21 to calculate the number of C60HkCl60-k 
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molecules and Balasubramanian computed the number of 
C60H36 isomers. F. Zhang et al.18 for calculating the 
possibilities of different positional isomers used the 
Pólya's counting theorem. He also applied the 
generalization of the Pólya's theorem to compute the 
number of chiral isomers. 

We are now ready to enumerate the number of hetero-
fullerenes in a series of fullerenes constructed by leapfrog. 
From the above discussion our problem is reduced to the 
coloring of the corresponding fullerene graph with 
3 20n ×  vertices. Consider the molecular graph of the 
fullerene

3 20nC
×

, Fig. 2. From leapfrog principle, one can 
see that the symmetry group G of these fullerenes is 
isomorphic to the group S3 of order 6 and the cycle types 
of elements of G are as in the following table: 

 
 

#Permutations Cycle type Fullerene 
1
3
2

 

3 341
n ×  

6 17 3 31 2
nn n× −  

13 343
n− ×  

3 20nC
×

 

 

 
 

Fig. 2. The Fullerene C34. 
 

Thus the cycle index of G is computed as: 
n n n 134 3 6n 17 3 3n 34 3

1 1 2 3Z(G, X) (x 3x x 2x ) / 6.
−× × − ×= + +  

But from the cycle indices one can compute the 
number of possible positional isomers, the number of 
chiral isomers and the number of orbits under the whole 
point group Ih. For the number of orbits under the whole 
point group S3, we simply note that 1

h h hI I IZ P Pχ− = . 
We mention here that our computations of symmetry 

properties and cycle indices of fullerenes were carried out 
with the use of GAP22. This software was constructed by 
the GAP team in Aachen. In Table 1, we apply this 
software to compute the number of hetero- fullerenes for 
the case of n = 1. 

 

Table 1. The number of C34-kBk  molecules. 
 

k,34 -k 
Number of C34−kBk 

molecules for 
symmetry group 

0,34 
1,33 
2,32 
3,31 
4,30 
5,29 
6,28 
7,27 
8,26 
9,25 
10,24 
11,23 
12,22 
13,21 
14,20 
15,19 
16,18 
17,17 

1 
6 

102 
1001 
7801 

46376 
224509 
896621 
3027224 
8741931 
21857839 
47682960 
91398638 

154664070 
232005664 
309328074 
367339214 
388934370 

 
 
3. Conclusions 
 
In this paper an efficient method is presented which is 

useful for computing permutational isomers of hetero-
fullerenes. We applied our method on C34 fullerene and 
compute the number of such isomers. From the cycle 
index of leapfrog of a series of fullerenes with S3 point 
group symmetry, one can compute such numbers for all 
elements of the series.  
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